翻訳と辞書
Words near each other
・ Harekrishna Deka
・ Harekrushna Mahatab
・ Harel
・ Harel Brigade
・ Harel Group
・ Harel Levy
・ Harel Locker
・ Harel Mallac Group
・ Harel Moyal
・ Hardyville, Virginia
・ Hardywood Park Craft Brewery
・ Hardy–Littlewood circle method
・ Hardy–Littlewood inequality
・ Hardy–Littlewood maximal function
・ Hardy–Littlewood tauberian theorem
Hardy–Littlewood zeta-function conjectures
・ Hardy–Ramanujan Journal
・ Hardy–Ramanujan theorem
・ Hardy–Weinberg principle
・ Hardzei Tsishchanka
・ Hard–easy effect
・ Hare
・ Hare & Hare
・ Hare (computer virus)
・ Hare (disambiguation)
・ Hare (hieroglyph)
・ Hare (MCC cricketer)
・ Hare (surname)
・ Hare Ame Nochi Suki
・ Hare and Billet


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Hardy–Littlewood zeta-function conjectures : ウィキペディア英語版
Hardy–Littlewood zeta-function conjectures
In mathematics, the Hardy–Littlewood zeta-function conjectures, named after Godfrey Harold Hardy and John Edensor Littlewood, are two conjectures concerning the distances between zeros and the density of zeros of the Riemann zeta function.
In 1914 Godfrey Harold Hardy proved that the Riemann zeta function \zeta\bigl(\tfrac+it\bigr) has infinitely many real zeros.
Let N(T) be the total number of real zeros, N_0(T) be the total number of zeros of odd order of the function \zeta\bigl(\tfrac+it\bigr), lying on the interval
(0,T].
Hardy and Littlewood claimed two conjectures. These conjectures – on the distance between real zeros of \zeta\bigl(\tfrac+it\bigr) and on the density of zeros of \zeta\bigl(\tfrac+it\bigr) on intervals (T,T+H] for sufficiently great T > 0, H = T^ and with as less as possible value of a > 0, where \varepsilon > 0 is an arbitrarily small number – open two new directions in the investigation of the Riemann zeta function.
1. For any \varepsilon > 0 there exists such T_0 = T_0(\varepsilon) > 0 that for T \geq T_0 and H=T^ the interval (T,T+H] contains a zero of odd order of the function \zeta\bigl(\tfrac+it\bigr).
2. For any \varepsilon > 0 there exist T_0 = T_0(\varepsilon) > 0 and c = c(\varepsilon) > 0, such that for T \geq T_0 and H=T^ the inequality N_0(T+H)-N_0(T) \geq cH is true.
In 1942 Atle Selberg studied the problem 2 and proved that for any \varepsilon > 0 there exists such T_0 = T_0(\varepsilon) > 0 and c = c(\varepsilon) > 0, such that for T \geq T_0 and H=T^ the inequality N(T+H)-N(T) \geq cH\log T is true.
In his turn, Selberg claim his conjecture that it's possible to decrease the value of the exponent a = 0.5 for H=T^ which was proved forty-two years later by A.A. Karatsuba.
==References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Hardy–Littlewood zeta-function conjectures」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.